晶文摘

[人工智慧] 倒傳遞類神經網路

給晶新聞一個讚



作者:夏肇毅 2019-7-29


一個類神經網路就是由多個神經元組成一層。同一層的各個神經元都接到相同的輸入端。下一層的神經元,就會將上一層的各個輸出端當成自己的輸入。所以同一層的神經元大家都有一樣的輸入。然後經過自己的權重處理,所以會產生不同的輸出。類神經網路是依照輸出層的錯誤來調整各個層級的權重。我們將輸出層的錯誤的梯度,依照微分的連鎖律推導,由輸出端算出應分配到個輸入端的大小,然後將這個梯度向前面各層一步一步地傳遞過去。每一層的神經元收到這個倒遞傳回來的梯度大小之後,就根據它來調整本身的權重。這種反向傳播演算法(Rumelhart, Hinton,Williams, 1986)的發明,是類神經網路近年來大幅進步的主要原因。

學習過程中使用梯度下降法,就是根據誤差的梯度(類似斜率)來找出誤差的下降方向,並一直往最小值的方向來修正參數。好比在自動駕駛上面的路況識別,把實際路況一直餵給人工智慧。其中並標示每一個畫面哪邊是車子,哪邊是道路,哪邊是行人。經過重複訓練之後,人工智慧就就可以了解每一個畫面中,每個路況裡面可能什麼地方有行人,什麼地方是道路,什麼地方有障礙物等等。