¡@

Home 

OpenStack Study: weights.py

OpenStack Index

**** CubicPower OpenStack Study ****

# Copyright (c) 2011-2012 OpenStack Foundation

# All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License"); you may

# not use this file except in compliance with the License. You may obtain

# a copy of the License at

#

# http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

# License for the specific language governing permissions and limitations

# under the License.

"""

Pluggable Weighing support

"""

import abc

import six

from nova import loadables

**** CubicPower OpenStack Study ****

def normalize(weight_list, minval=None, maxval=None):

    """Normalize the values in a list between 0 and 1.0.

    The normalization is made regarding the lower and upper values present in

    weight_list. If the minval and/or maxval parameters are set, these values

    will be used instead of the minimum and maximum from the list.

    If all the values are equal, they are normalized to 0.

    """

    if not weight_list:

        return ()

    if maxval is None:

        maxval = max(weight_list)

    if minval is None:

        minval = min(weight_list)

    maxval = float(maxval)

    minval = float(minval)

    if minval == maxval:

        return [0] * len(weight_list)

    range_ = maxval - minval

    return ((i - minval) / range_ for i in weight_list)

**** CubicPower OpenStack Study ****

class WeighedObject(object):

"""Object with weight information."""

**** CubicPower OpenStack Study ****

    def __init__(self, obj, weight):

        self.obj = obj

        self.weight = weight

**** CubicPower OpenStack Study ****

    def __repr__(self):

        return "" % (self.obj, self.weight)

@six.add_metaclass(abc.ABCMeta)

**** CubicPower OpenStack Study ****

class BaseWeigher(object):

"""Base class for pluggable weighers.

The attributes maxval and minval can be specified to set up the maximum

and minimum values for the weighed objects. These values will then be

taken into account in the normalization step, instead of taking the values

from the calculated weights.

"""

minval = None

maxval = None

**** CubicPower OpenStack Study ****

    def weight_multiplier(self):

        """How weighted this weigher should be.

        Override this method in a subclass, so that the returned value is

        read from a configuration option to permit operators specify a

        multiplier for the weigher.

        """

        return 1.0

    @abc.abstractmethod

**** CubicPower OpenStack Study ****

    def _weigh_object(self, obj, weight_properties):

        """Weigh an specific object."""

**** CubicPower OpenStack Study ****

    def weigh_objects(self, weighed_obj_list, weight_properties):

        """Weigh multiple objects.

        Override in a subclass if you need access to all objects in order

        to calculate weights. Do not modify the weight of an object here,

        just return a list of weights.

        """

        # Calculate the weights

        weights = []

        for obj in weighed_obj_list:

            weight = self._weigh_object(obj.obj, weight_properties)

            # Record the min and max values if they are None. If they anything

            # but none we assume that the weigher has set them

            if self.minval is None:

                self.minval = weight

            if self.maxval is None:

                self.maxval = weight

            if weight < self.minval:

                self.minval = weight

            elif weight > self.maxval:

                self.maxval = weight

            weights.append(weight)

        return weights

**** CubicPower OpenStack Study ****

class BaseWeightHandler(loadables.BaseLoader):

object_class = WeighedObject

**** CubicPower OpenStack Study ****

    def get_weighed_objects(self, weigher_classes, obj_list,

            weighing_properties):

        """Return a sorted (descending), normalized list of WeighedObjects."""

        if not obj_list:

            return []

        weighed_objs = [self.object_class(obj, 0.0) for obj in obj_list]

        for weigher_cls in weigher_classes:

            weigher = weigher_cls()

            weights = weigher.weigh_objects(weighed_objs, weighing_properties)

            # Normalize the weights

            weights = normalize(weights,

                                minval=weigher.minval,

                                maxval=weigher.maxval)

            for i, weight in enumerate(weights):

                obj = weighed_objs[i]

                obj.weight += weigher.weight_multiplier() * weight

        return sorted(weighed_objs, key=lambda x: x.weight, reverse=True)