¡@

Home 

OpenStack Study: ram_filter.py

OpenStack Index

**** CubicPower OpenStack Study ****

# Copyright (c) 2011 OpenStack Foundation

# Copyright (c) 2012 Cloudscaling

# All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License"); you may

# not use this file except in compliance with the License. You may obtain

# a copy of the License at

#

# http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT

# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

# License for the specific language governing permissions and limitations

# under the License.

from oslo.config import cfg

from nova import db

from nova.openstack.common.gettextutils import _

from nova.openstack.common import log as logging

from nova.scheduler import filters

LOG = logging.getLogger(__name__)

ram_allocation_ratio_opt = cfg.FloatOpt('ram_allocation_ratio',

default=1.5,

help='Virtual ram to physical ram allocation ratio which affects '

'all ram filters. This configuration specifies a global ratio '

'for RamFilter. For AggregateRamFilter, it will fall back to '

'this configuration value if no per-aggregate setting found.')

CONF = cfg.CONF

CONF.register_opt(ram_allocation_ratio_opt)

**** CubicPower OpenStack Study ****

class BaseRamFilter(filters.BaseHostFilter):

**** CubicPower OpenStack Study ****

    def _get_ram_allocation_ratio(self, host_state, filter_properties):

        raise NotImplementedError

**** CubicPower OpenStack Study ****

    def host_passes(self, host_state, filter_properties):

        """Only return hosts with sufficient available RAM."""

        instance_type = filter_properties.get('instance_type')

        requested_ram = instance_type['memory_mb']

        free_ram_mb = host_state.free_ram_mb

        total_usable_ram_mb = host_state.total_usable_ram_mb

        ram_allocation_ratio = self._get_ram_allocation_ratio(host_state,

                                                          filter_properties)

        memory_mb_limit = total_usable_ram_mb * ram_allocation_ratio

        used_ram_mb = total_usable_ram_mb - free_ram_mb

        usable_ram = memory_mb_limit - used_ram_mb

        if not usable_ram >= requested_ram:

            LOG.debug(_("%(host_state)s does not have %(requested_ram)s MB "

                    "usable ram, it only has %(usable_ram)s MB usable ram."),

                    {'host_state': host_state,

                     'requested_ram': requested_ram,

                     'usable_ram': usable_ram})

            return False

        # save oversubscription limit for compute node to test against:

        host_state.limits['memory_mb'] = memory_mb_limit

        return True

**** CubicPower OpenStack Study ****

class RamFilter(BaseRamFilter):

"""Ram Filter with over subscription flag."""

**** CubicPower OpenStack Study ****

    def _get_ram_allocation_ratio(self, host_state, filter_properties):

        return CONF.ram_allocation_ratio

**** CubicPower OpenStack Study ****

class AggregateRamFilter(BaseRamFilter):

"""AggregateRamFilter with per-aggregate ram subscription flag.

Fall back to global ram_allocation_ratio if no per-aggregate setting found.

"""

**** CubicPower OpenStack Study ****

    def _get_ram_allocation_ratio(self, host_state, filter_properties):

        context = filter_properties['context'].elevated()

        # TODO(uni): DB query in filter is a performance hit, especially for

        # system with lots of hosts. Will need a general solution here to fix

        # all filters with aggregate DB call things.

        metadata = db.aggregate_metadata_get_by_host(

                     context, host_state.host, key='ram_allocation_ratio')

        aggregate_vals = metadata.get('ram_allocation_ratio', set())

        num_values = len(aggregate_vals)

        if num_values == 0:

            return CONF.ram_allocation_ratio

        if num_values > 1:

            LOG.warning(_("%(num_values)d ratio values found, "

                          "of which the minimum value will be used."),

                         {'num_values': num_values})

        try:

            ratio = float(min(aggregate_vals))

        except ValueError as e:

            LOG.warning(_("Could not decode ram_allocation_ratio: '%s'"), e)

            ratio = CONF.ram_allocation_ratio

        return ratio